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Abstract

The onset time of double-diffusive convection in time-dependent, nonlinear concentration fields was investigated the-
oretically and experimentally. The stability analysis was conducted on the basis of the propagation theory. Under the
linear stability theory, the linearized perturbation equations were transformed similarly by using the concentration pen-
etration depth as a length-scaling factor. The newly derived stability equations were solved numerically. Also the onset
time was determined experimentally by employing an electrochemical technique where 0.03–0.3 M CuSO4 + 1.5 M
H2SO4 aqueous solutions were adopted as electrolyte. The onset time of double-diffusive convection was delayed or
shortened depending on the degree of stable stratification.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Buoyancy-driven convection in double-diffusive sys-
tems has been studied extensively in connection with
wide engineering applications such as crystal growth
processing, solar ponds and natural gas storage tanks
[1–3]. It will enhance or reduce heat and/or mass trans-
fer rates, of which magnitude depends on the direction
of the temperature and concentration gradients and
the ratio of thermal to solutal diffusivity. But the inher-
ent complexity in convective transport phenomena
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makes it very difficult to predict the critical condition,
the onset of double-diffusive convection.

In an initially motionless, stably thermally stratified
fluid layer placed between two horizontal plates where
the concentration field changes suddenly, natural con-
vection will set in at a certain time, depending on both
the thermal Rayleigh number and the solute Rayleigh
number. Nield [4] examined the linear stability theory
to obtain the onset conditions of thermohaline convec-
tion in horizontal fluid layer. Turner [2] summarized
stability conditions of double-diffusive systems. Kaviany
and Vogel [5], and Yoon et al. [6] analyzed the stability
conditions of double-diffusive system under the nonlin-
ear, time-dependent temperature gradient by employing
their amplification theory and propagation theory,
respectively. The amplification theory is quite popular
ed.
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Nomenclature

a dimensionless wave number
C concentration [M]
d fluid layer thickness [m]
g gravitation acceleration [m/s2]
Le Lewis number, a/as
Ra Rayleigh number, gbDTd3/(am)
Rs solutal Rayleigh number, gbsDTd

3/(asm)
Sc Schmidt number, m/as
T temperature [K]
(u,v,w) dimensionless velocity disturbances in

Cartesian coordinates
(x,y,z) dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity [m2/s]
as mass diffusivity [m2/s]
b volumetric thermal expansion coefficient

[K�1]
bs volumetric solutal expansion coefficient

[M�1]
Dc concentration boundary layer thickness [m]

dc dimensionless concentration boundary layer
thickness, Dc/d

f dimensionless similarity variable, z/s1/2

h dimensionless temperature disturbance,
gbd3T1/(am)

h0 dimensionless basic temperature, (T0 � Ti)/
DT

/ dimensionless concentration disturbance,
gbsd

3C1/(asm)
/0 dimensionless basic concentration, C0/DC
m kinematic viscosity [m2/s]
s dimensionless time
q density [kg/m3]

Subscripts

0 basic quantities
1 perturbation quantities
c critical conditions

Superscript

* transformed quantities

g
t T d

C
Z

Fig. 1. Schematic diagram of system considered here.
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but it requires both the initial conditions and the ampli-
fication factor to mark manifest buoyancy-driven
motion [5,7,8]. The propagation theory employs the
thermal penetration depth as a length scaling factor
and then the linearized equations are transformed into
the similar forms [9–11]. This theory has produced the
critical conditions comparable with experimental mea-
surements. The propagation has been extended to the
system of solidification [12] and surface-tension driven
convection [13,14] and onset of Taylor-like vortices in
the various systems [15–17].

In the present study, the onset of double-diffusive
convection is analyzed theoretically and experimentally.
The effect of stable thermal stratification on the onset of
double-diffusive convection is analyzed by employing
propagation theory. And the validity of theoretical
results is discussed in comparison with experimental
results in electrochemical ionic mass transfer system.
2. Theoretical analysis

2.1. Mathematical formulations

The problem considered here is a horizontal fluid
layer confined between two rigid boundaries separated
by a distance d, as shown in Fig. 1. The fluid layer is ini-
tially quiescent at a constant concentration Ci and stably
stratified by a uniform temperature gradient. At time
t = 0 the concentration of the lower boundary is reduced
and kept constant. For large concentration difference
systems natural convection will set in at a certain time
due to buoyancy force. Under this condition the density
variation of fluid is assumed to follow the usual equation
of state [2]:

q ¼ qr½1� bðT � T rÞ þ bsðC � CrÞ�; ð1Þ

where q, T, C, b and bs represent fluid density, temper-
ature, concentration, thermal expansion coefficient and
solutal expansion coefficient, respectively. The subscript
‘‘0’’ denotes the reference state.

The important parameters to characterize the onset
of motion in the present system are solutal Rayleigh
number Rs, thermal Rayleigh number Ra, Schmidt num-
ber Sc and Lewis number Le defined by

Ra ¼ gbDTd3

am
; Rs ¼ gbsDCd

3

asm
;

Sc ¼ m
as

and Le ¼ a
as
;
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where g, a, m, DT, as and DC denote gravitational accel-
eration, thermal diffusivity, kinematic viscosity, temper-
ature difference, mass diffusivity and concentration
difference, respectively. Under the linear stability theory,
the nondimensionalized conservation equations are
given as:

1

Sc
o

os
�r2

� �
r2w ¼ r2

1/1 � Ler2
1h1; ð2Þ

o/1

os
þ Rs

o/0

oz
w ¼ r2

1/1; ð3Þ

oh1
os

þ Ra
oh0
oz

w ¼ Ler2
1h1; ð4Þ

under the following boundary conditions:

w1 ¼
ow1

oz
¼ /1 ¼ h1 ¼ 0 at z ¼ 0 and z ¼ 1. ð5Þ

Here, $2 is the three-dimensional Laplacian, and r2
1 is

the horizontal one with respects to x and y. Here z, s,
w1, h0, h1, /0 and /1 are the dimensionless vertical dis-
tance, time, basic temperature, perturbed temperature,
basic concentration and perturbed concentration,
respectively. Each variable has been nondimensionalized
by using d, d2/as, as/d, DT, am/gbd

3, DC and asm/gbsd
3,

respectively.
For the deep-pool system of small s, the basic con-

centration field is given as

/0 ¼ erf
z

2
ffiffiffi
s

p
� �

. ð6Þ

For the thermally stably stratified fluid layer, the dimen-
sionless temperature field is linear as shown in Fig. 1.
Therefore the basic density field satisfying the equation
of state can be defined as

�q ¼ /0 �
RaLe
Rs

h0; ð7Þ
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Fig. 2. Base density profiles with respect Ra for Rs = 107,
Le = 300 and s = 10�3.
where �q denotes the nondimensionalized basic density
defined as (q � qr)DCbs/qr. The resultant variation of
the profile of the basic density is shown in Fig. 2 where
maximum magnitude of density locates within the fluid
layer.

2.2. Propagation theory

For the given Rs, Sc, Ra and Le the time to mark the
onset of convective motion is to be found under the prin-
ciple of exchange of stabilities from Eqs. (2)–(4), sub-
jected to the boundary conditions of Eq. (5). Even
though the initially stratified density field may reduce
the magnitude of the generated disturbances, the distur-
bances are to be generated continuously. Hence, the den-
sity distribution for molecular diffusion of heat and mass
in aqueous solution becomes time-dependent. It is a
formidable task to obtain quantitative estimates of
the onset time of the double-diffusive convection. In
the frozen-time model the terms involving o(Æ)/os are ne-
glected and therefore the system becomes time-indepen-
dent. The proper initial conditions at s = 0 are required
in the stochastic model and the amplification theory.
Among the models the amplification theory is quite pop-
ular but its amplification factor to represent manifest
convection should be decided experimentally. The prop-
agation theory described below is a rather simple, deter-
ministic approach and it will be employed here for the
stability analysis.

The propagation theory employed for finding the
critical time tc is based on the assumption that distur-
bances at the onset of convection are mainly confined
within the solutal penetration depth Dc. For small t the
following relation is obtained from the balance between
the viscous and buoyant forces in the z-component of
motion from Eq. (2)

w1

/1

����
���� � d2c � s; ð8Þ
where dcð/
ffiffiffi
s

p
Þ is the dimensionless concentration

boundary layer thickness scaled by the layer depth d.
With the above reasoning the dimensionless amplitude
functions of disturbances, based on the relation (8),
are assumed to have the form of

½w1;/1; h1� ¼ bsw�ðfÞ;/�ðfÞ; h�ðfÞc exp½iðaxxþ ayyÞ�;
ð9Þ

where f ¼ z=
ffiffiffi
s

p
, and ax and ay are the dimensionless

wave numbers in x- and y-directions, respectively. The
similarity variable f is introduced to take into account
the position and temporal dependencies of disturbances.
By using the relation (9) the following new set of dimen-
sionless stability equations are obtained:
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ðD2 � a�2Þ2w� ¼ 1

Sc
� 1

2
fD3 þ 1

2
a�2fD� a�2

� �
w�

þ a�2ð/� � Leh�Þ; ð10Þ

D2 þ 1

2
fD� a�2

� �
/� ¼ Rs�w�D/0; ð11Þ

D2 þ 1

2Le
fD� a�2

� �
h� ¼ �Ra�

Le
w� ð12Þ

with boundary conditions:

w� ¼ Dw� ¼ /� ¼ h� ¼ 0 for f ¼ 0 and f ! 1; ð13Þ

where a� ¼ a
ffiffiffi
s

p
, a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
, Rs* = Rss3/2,

Ra* = Ras2 and D = d/df. These equations involve
time-dependent properties implicitly. It is assumed that
a*, Ra* and Rs* are all eigenvalues and the principle of
exchange of stabilities is kept. For a given Sc, Le, a*

and Ra* the minimum value of Rs* will be found
numerically.

2.3. Solution method

In order to integrate the stability equations, Eqs.
(10)–(12), trial value of the eigenvalue Rs* and the
boundary conditions D3w*, D/* and Dh* at f = 0 are as-
sumed properly for given Sc, Le, a* and Ra*. Here the
value of Sc and Le are fixed at 2100 and 300, respec-
tively, in order to consider double diffusion of heat
and copper ion in aqueous sulfuric acid and copper sul-
fate solution. Since boundary conditions represented by
Eq. (13) are all homogeneous, the value of D2w* at f = 0
can be assigned arbitrarily. This procedure is based on
the outward shooting method in which the boundary
value problem is transformed into the initial value prob-
lem. The trial values, together with the four known
conditions at lower boundary, give all the information
to make numerical integration. The integration based
on the fourth-order Runge–Kutta method is performed
from f = 0 to fictitious distance to satisfy the infinite
boundary conditions. By using the Newton–Raphson
iteration the trial value of Rs*, D3w*, D/* and Dh* are
corrected until the stability equations satisfy the infinite
boundary conditions within the maximum relative toler-
ance of 10�8. Then, by increasing the distance step by
step, the above integration is repeated. Finally, the value
of Rs* is decided through the extrapolation.

2.4. Stability analysis results

The resulting neutral stability curves calculated with
changing values of a* and Rs*, are shown in Fig. 3.
According to the present theory the minimum value of
Rs* and a* can be obtained for a given Ra*, as shown
in Fig. 3, and it characterizes the critical condition of
convective motion. By using the relation of Rs�c ¼
Rs
ffiffiffiffi
s3c

p
and Ra�c ¼ Ras2c , we can determine the critical

time sc for given Rs and Ra.
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Fig. 4 shows that the onset time is delayed as Ra in-
creases for given Sc, Le and Rs. The effect of the temper-
ature gradient on the critical time is summarized in Fig. 5.
The minimum bound of Fig. 5, i.e. sc,0 = 7.53Rs�2/3 cor-
responds to the case of the zero temperature gradient of
Ra = 0. Recently, Bograchev et al. [18] suggested the sim-
ilar relation of sc,0 = 2.4Rs�2/3. The thermal stabilizing
effect begins to be observable at approximately
Rs 6 0.01LeRa. And, for the base state of linear profiles,
i.e. for the fully developed state of s ! 1, the stability
conditions can be approximated by [2]

Rsc � Ra ¼ 1708 with ac ¼ 3:117 for s ! 1. ð14Þ
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Fig. 6. Experimental setup.
3. Experiments

3.1. Experimental setups

The system of double-diffusive convection employed
in the present investigation is that of the electrochemical
redox reaction of copper ion in aqueous copper sulfate
solution with stable thermal stratification. The present
double-diffusive system is schematized in Fig. 1. This
electrochemical system has been widely used in studying
buoyancy-driven phenomena as copper sulfate has a rea-
sonable solubility in water and does not form soluble
product on the electrode surface [19]. Copper plates were
used as both cathode and anode. At the cathode follow-
ing reduction reaction occurs:

Cu2þ +2e� !Cu,

while the following oxidation reaction proceeds at the
anode:

Cu!Cu2þ +2e�.

In these experiments sulfuric acid was added as a sup-
porting electrolyte to lessen the migration effect.

The dependency of density, viscosity and mass diffu-
sivity on composition were calculated by using the fol-
lowing correlations:

qðg cm�3Þ ¼ 0:9978þ 0:06406MH2SO4
� 0:00167M2

H2SO4

þ 0:122755MCuSO4
þ 0:01820M2

CuSO4
;

lðcpÞ ¼ 0:974þ 0:1235MH2SO4
þ 0:0556M2

H2SO4

þ 0:5344MCuSO4
þ 0:5356M2

CuSO4
;

l � asðcm2 s�1Þ ¼ ð0:7363þ 0:00511MH2SO4

þ 0:02044MCuSO4
Þ � 10�5;

which were suggested by Fenech and Tobias [20] for
22 �C within the error bounds of 0.5%. The temperature
effects on these physical properties were calculated by
following Chiang and Goldstein�s work [21].
The electrochemical cell was constructed as a cubic
with two horizontal copper plates with the same area
of 5 · 5 cm2 and four vertical acrylic plates with various
depths of 3, 4 and 5 cm. The fluid layer is initially quies-
cent at a constant concentration Cb and stably stratified
by a uniform temperature gradient. For the stable tem-
perature gradient, the upper surface was heated uni-
formly while the lower one was cooled by circulating
constant temperature water through the copper plates.
The electrolyte consists of 0.03–0.3 M CuSO4 solutions
with 1.5 M H2SO4 as a supporting electrolyte. Copper
ion was deposited on the cathode electrode under the
limiting current condition, and was dissolved from the
anode one. The electrical information in the cell were
obtained by a PC controlling potentiostat (EG&G
Parc.) on line. The calomel reference electrode was used
to measure the potential difference between the electro-
lyte solution and the cathode. The experimental setup
is given in Fig. 6.

Ionic mass transfer experiments were carried under
the limiting current condition in horizontal electrolyte
solution. The typical limiting current under the typical
condition is shown in Fig. 7. As the potential difference
increase, the current flowing between the two electrodes
increase sharply at first until the limiting potential differ-
ence reaches a certain value. However, above this poten-
tial difference the current rise again. At this stage, the
hydrogen ions take part in electrochemical reaction
and hydrogen gas bubbles evolve. The plateau where
an increase in potential difference causes almost no in-
crease in current is known as the limiting current. Exper-
iments were repeated separately in two different modes
of unstable (cathode facing upward) buoyancy-driven
convection or stable (cathode facing downward) diffu-
sion for various thermal gradients, cell depths and con-
centrations of bulk solution. Typical current–time curve
is shown in Fig. 8. Two curves are coincident each other
to a certain point, where buoyancy-driven motion sets in
for unstable geometry. The upside down S-shape of cur-
rent variations with time shows the peculiar behavior
of natural convection in an ionic mass transport. It is
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The range of thermal Rayleigh number in this experiment is
2 · 106 6 Ra 6 4 · 108.
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considered that convective flows start at the minimum
point of each current curve in a detectable manner.

3.2. Experimental results and discussions

Patrick and Wragg [22], Inoue et al. [23] and Morgu-
nova et al. [24] measured the individual mass transfer
coefficient with time in electroplating system, where
Sc > 2000. Their undershoot time which indicates the
minimum of the Sherwood number Sh in the plot of
Sh vs. s and is assumed to be marked the characteristic
time to exhibit the mass transfer enhancement due to
natural convection is shown in Fig. 9. In this limiting
case the Lewis number and thermal Rayleigh number
do not affect the critical time, and the present values
of sc are about one fourth of the experimental under-
shoot time.

Foster [25] commented that with correct dimensional
relations the relation of s0 ffi 4sc would be kept for the
case of horizontal fluid layers heated isothermally from
below. This means that the growing time for distur-
bances is needed before they are detected experimen-
tally. Therefore, it seems evident that the predicted
onset time tc is smaller than the detection time t0. This
means that a fastest growing mode of instabilities, which
set in at t = tc, will grow with time before manifest
motion is first detected experimentally. For deep-pool
systems, 4sc represents manifest convection very well.
This may support Foster�s viewpoint that the predicted
onset time of convection motion with correct dimension-
less relations would be too early by a factor of about 4
[25].

The effect of stable thermal stratification on the onset
time of buoyancy-driven convection is characterized
experimentally and summarized in Fig. 10. The range
of thermal Rayleigh number in this experiment is
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2 · 106 6 Ra 6 4 · 108. As shown in this figure, as the
magnitude of stable thermal stratification increase the
onset time decrease. This is an unexpected result and
opposite to the theoretical result that stable thermal
stratification delays the onset time of convection. The ef-
fect of stable stratification on the onset of convective
motion is described in Fig. 11. As shown in this figure,
for the range of LeRa/Rs4/3 6 5 · 10�5 it may be stated
that for a given Rs convective motion is detected earlier
with increasing LeRa/Rs4/3. This trend is reversed for
the region of LeRa/Rs4/3 > 5 · 10�5, that is the stable
stratification accelerates the onset of convection. Similar
trend was observed in Ueda et al.�s [26] experimental and
theoretical results.

Ueda et al.�s system is an initially stably stratified,
horizontal fluid layer of thickness d. For time t 6 0,
the conduction field has a linear temperature profile with
T = Ti at the vertical distance Z = 0 and T = Tu(>Ti) at
Z = d. The fluid layer is heated from below with a higher
temperature Tb(>Ti) for t > 0. Their system is slightly
different from the present one, but conceptually identi-
cal. In their system, the stable stratification delays or
accelerates the onset of convective motion according to
the degree of relative initial stratification, c = (Tu � Ti)/
(Tb � Ti). They owed this unexpected trend to the multi-
ple cell pattern at the onset of convective motion, even
though it could not detect in their experiment. Recently,
Choi et al. [27] reconsidered Ueda et al.�s system by solv-
ing Navier–Stoke and energy equations employing the
nonlinear effects numerically. They introduce distur-
bances having very small amplitude at t = 0, and track
the temporal growth of disturbance energy. According
to their theoretical results, the convective motion is
onset at the time predicted by propagation theory which
is employed in the present study, and the growth period
is required to the disturbances are amplified to be
detected experimentally. In their study, for a certain
range of stable stratification, the growth period becomes
short as the degree of stratification becomes intensified.
The present results seem to be explained by considering
the growth period of the disturbances, i.e. for the range
of LeRa/Rs4/3 > 5 · 10�5 the growth period is shortened
as the stable stratification becomes intensified.
4. Conclusions

The onset of double-diffusive convection in a hori-
zontal fluid layer with stable thermal stratification is
investigated theoretically and experimentally. For the
limiting case of Ra = 0, i.e. no initial stable stratifica-
tion, the stability criteria compare reasonably well with
experimental results and manifest convection seems to
be observable. In the single diffusion case of Ra = 0,
the velocity disturbances look too weak to be observable
experimentally for s 6 4sc. The detection time of double-
diffusive convection was delayed or accelerated depend-
ing on the degree of initial stratification, LeRa/Rs4/3.
For the range of LeRa/Rs4/3 > 5 · 10�5 the detection
time is shortened as the stable stratification becomes
intensified. This unexpected results could be explained
by considering the time required for disturbances to
grow and further studies on the growth of disturbances
are required.
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